You are here
Home > Posts tagged "Sichuan Basin"

Numerical Study of Simultaneous Multiple Fracture Propagation in Changning Shale Gas Field

Figure 1. Three transverse fractures with a uniform spacing of 23.3 m in a single stage.

Numerical Study of Simultaneous Multiple Fracture Propagation in Changning Shale Gas Field A series of case studies were investigated to analyze the effects of engineering parameters on simultaneous multiple fracture propagation. The fracture spacing, perforating number, injection rate, fluid viscosity and number of fractures within one stage were considered. The simulation

Quantitative prediction of shale gas sweet spots based on seismic data in Lower Silurian Longmaxi Formation, Weiyuan area, Sichuan Basin, SW China

Fig. 1. Location of the study area.

Second, data volumes with high precision of the elastic parameters were obtained from pre-stack simultaneous inversion. The horizontal distribution of key parameters for shale gas evaluation were calculated based on the results of rock physics analysis. Then, the fuzzy evaluation equation was established by fuzzy optimization method with test and

Shale gas exploitation: Status, problems and prospect

Fig. 2. Annual production of major shale gas plays in the world. Note: The data abroad are sourced from Refs. [14], [15], and the domestic data from Ref. [1]. Except for the Monteney and Muskwa shale gas plays in Canada of which the production data are shale gas production from 2011 to 2012, those of other plays are the data in 2015.

Shale gas reserves and production have been in a rapid growth in China owing to the Lower Paleozoic Wufeng and Longmaxi shale gas exploitation in the Sichuan Basin, which has become an important sector for the future increment of gas reserves and output in China. However, substantial progress has been

An optimal design of network-fracture acidification for ultra-deep gas wells in the Lower Permian strata of the western Sichuan Basin

The Lower Permian reservoirs in the western Sichuan Basin are ultra-deep with high temperature, high pressure and developed natural fractures. Leakage and contamination of drilling fluid is the main factor restricting reservoir stimulation effects, so the acidification will be the solution also as the first choice to enhance the gas recovery. In view of this, an acidification design was proposed to minimize the contamination skin factor to the highest degree.

Accordingly, a skin factor calculation model for network-fracture acidification was developed. It is indicated that when the acid pumping rate is 5.0 m3/min, all natural fractures around Well S1-1 can be opened, regardless of their dip angles. Besides, the advantage of high-rate acid injection emerges gradually when the injected acid

Fault reactivation and earthquakes with magnitudes of up to Mw4.7 induced by shale-gas hydraulic fracturing in Sichuan Basin, China

Figure 6 Numerical model for coupled thermal-hydrological-mechanical simulation of injections in horizontal wells for hydraulic fracturing.

The geologic reasons why earthquake magnitudes associated with hydraulic fracturing operations are so high in this area are discussed. Because hydraulic fracturing operations are on the rise in the Sichuan Basin, it would be beneficial for the geoscience, gas operator, regulator, and academic communities to work collectively to elucidate the