You are here
Home > Posts tagged "Hydraulic Fracturing"

Tight oil market dynamics: Benchmarks, breakeven points,and inelasticities

Fig. 7. U.S. tight oil and shale gas drilled but uncompleted wells (EIA, 2017b) (dotted curve, right axis) and West Texas Intermediate crude oil price (EIA, 2017c) (solid curve, left axis) from January 2014 to April 2017.

Abstract When comparing oil and gas projects - their relative attractiveness, robustness, and contribution to markets - various dollar per barrel benchmarks are quoted in the literature and in public debates. Among these benchmarks are a variety of breakeven points (also called breakeven costs or breakeven prices), widely used to predict

Groundwater baseline water quality in a shale gas exploration site and fracturing fluid-shale rock interaction

Fig. 2 The shallow groundwater chemical composition

At present, the baseline water quality must be firstly obtained to identify potential pollution of the activity and monitoring indicators should be studied for better environmental monitoring. We sampled shallow groundwater, produced waters, shale rock and soil in the Jiaoshiba shale-gas region, SW China and measurements have included water chemistry

Pore evolution in hydrocarbon-generation simulation of organic matter-rich muddy shale

Fig. 4. FESEM images of carbonaceous mudstone and the simulated samples at different temperatures.

However, in the high mature-overmature stage, shale porosity decreased with further increase of temperature and pressure. In contrast to micropores, micro-scale capillary pores and megapores in shale constantly decreased as rise of simulation temperature or pressure, indicating that deep-burial reservoirs was not favorable for free-gas storage; but significant increase of

Strengthening shale wellbore with silica nanoparticles drilling fluid

Fig. 7. SEM images of shale surface (a) nanoparticles within shale and (b) aggregate of nanoparticles plugging a pore throat.

Higher concentration of nanoparticles can induce better plugging effect. However, for the OBDFs, nanoparticles did not show these positive effects like the nano WBDFs, even leaded to some negative effects such as higher filtration and larger Young's-modulus reduction. The main reasons are that the silica nanoparticles can easily disperse in

Deformation mechanism of horizontal shale gas well production casing and its engineering solution: A case study on the Huangjinba Block of the Zhaotong National Shale Gas Demonstration Zone

Fig. 5. Three-dimensional imaging interpretation of multiple bending deformation of casing in Well H1-2.

It is shown that severe casing deformation tends to occur where structural fractures are developed. Besides, casing deformation is mainly in the form of “S”-shape bending vertically. The severely deformed casing is also characterized by obviously transverse shear deformation caused by the high-angle sliding compression of rocks. Therefore, some suggestions

Geological characteristics, main challenges and future prospect of shale gas

Fig. 2. Distribution diagram for onshore shale gas fields in the US [3].

It includes non-marine shale gas potential, core technology and equipment for resource deep than 3500 m, complex surface “factory mode” production, human geography and other non-technical factors. (4) Process economic evaluation under the conditions of government financial subsidies. China's shale gas project FIRR is about 8.0%–9.0%. Considering the global shale

Three-dimensional characterization of micro-fractures in shale reservoir rocks

Fractures are crucial for unconventional hydrocarbon exploitation, but it is difficult to accurately observe the 3D spatial distribution characteristics of fractures. Microtomography (micro-CT) technology makes it possible to observe the 3D structures of fractures at micro-scale.

Therefore, the independently-developed CTSTA program is adopted to quantitatively describe the micro-fractures inside rock core, including fracture dimension, extension direction and extension scale. Meanwhile, this study summarizes the classification characteristics of fractures and their anisotropy. On this basis, the fractal dimensions of fractures can also be extracted. Previous studies show that

Volume fracturing of deep shale gas horizontal wells

Fig. 1. Comparison between screw perforation and planar perforation.

In addition to planar perforation, multi-scale fracturing, full-scale fracture filling, and control over extension of high-angle natural fractures, some supporting techniques are proposed, including multi-stage alternate injection (of acid fluid, slick water and gel) and the mixed- and small-grained proppant to be injected with variable viscosity and displacement. These techniques

Removal of organic compounds from shale gas flowback water

Fig. 1. Fractions of TOC (A) and molecular composition of LMW acid (B) and LMW neutral (C) fractions of the shale gas flowback water.

Abstract Ozonation, sorption to granular activated carbon and aerobic degradation were compared as potential treatment methods for removal of dissolved organic carbon (DOC) fractions and selected organic compounds from shale gas flowback water after pre-treatment in dissolved air flotation unit. Flowback water was characterised by high chemical oxygen demand and DOC.

The shale gas revolution: Barriers, sustainability, and emerging opportunities

Fig. 1. Map of the Barnett Shale formation and production. The map illustrates the county-level spatial distribution of shale gas production (main map) and average per-well production rate (inset).

Abstract Shale gas and hydraulic refracturing has revolutionized the US energy sector in terms of prices, consumption, and CO2 emissions. However, key questions remain including environmental concerns and extraction efficiencies that are leveling off. For the first time, we identify key discoveries, lessons learned, and recommendations from this shale gas revolution

Adsorption damage and control measures of slick-water fracturing fluid in shale reservoirs

Fig. 1 Experimental integrating shale displacement unit and ultraviolet spectrophotometer.

With the increase of pH value, the adsorption capacity decreased gradually, the adsorption capacity increased first and then decreased with the increase of temperature, and the adsorption capacity was the largest at 45°C. The adsorption patterns of polymers on shale were described by scanning electron microscopy and magnetic resonance imaging.

Top