You are here
Home > Posts tagged "fluid flow"

Effects of stress-dependent permeability on well performance of ultra-low permeability oil reservoir in China

Fig. 1 Permeability increment versus pore pressure or effective stress

Several analytical simulations under the conditions of constant wellbore flowing pressure were performed to quantitatively assess the impact of stress sensitivity on single well performance. It is demonstrated that despite the stress-dependent permeability can have an adverse impact on production rate and recovery volume, it may be favorable for water

An embedded fracture modeling framework for simulation of hydraulic fracturing and shear stimulation

A numerical modeling framework is described that is able to calculate the coupled processes of fluid flow, geomechanics, and rock failure for application to general engineering problems related to reservoir stimulation, including hydraulic fracturing and shear stimulation.

As fluid is exchanged between the two domains, conservation of mass is guaranteed through a coupling term that appears as a simple source term in the governing mass balance equations. In this manner, as new tensile fractures nucleate and propagate subject to mechanical effects, numerical complexities associated with the introduction

A rock physics model for the characterization of organic-rich shale from elastic properties

We construct a rock physics model for organic-rich shales to quantify the effect of kerogen content and kerogen porosity using the Kuster and Toksöz theory and the self-consistent approximation method. Rock physics modeling results show that with the increase of kerogen content and kerogen-related porosity, the velocity and density of shales decrease, and the effect of kerogen porosity becomes more obvious only for higher kerogen content.

Abstract Kerogen content and kerogen porosity play a significant role in elastic properties of organic-rich shales. We construct a rock physics model for organic-rich shales to quantify the effect of kerogen content and kerogen porosity using the Kuster and Toksöz theory and the self-consistent approximation method. Rock physics modeling results show

Approaching a universal scaling relationship between fracture stiffness and fluid flow

Here we present a scaling relationship between fluid flow and fracture-specific stiffness that approaches universality. Fracture-specific stiffness is a mechanical property dependent on fracture geometry that can be monitored remotely using seismic techniques

Approaching a universal scaling relationship between fracture stiffness and fluid flow   Laura J. Pyrak-Nolte1,2,3 & David D. Nolte1 1 Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907-2036, USA. 2Lyle School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907-0395, USA. 3Department of Earth, Atmospheric and Planetary

Top