You are here
Home > Posts tagged "Eagle Ford Shale"

Using Cohesive Zone Model to Simulate the Hydraulic Fracture Interaction with Natural Fracture in Poro-Viscoelastic Formation

Figure 8. Crack geometry in different fracturing fluid injection rate.

Using Cohesive Zone Model to Simulate the Hydraulic Fracture Interaction with Natural Fracture in Poro-Viscoelastic Formation The numerical procedure for hydraulically driven fracture propagation uses a poro-viscoelasticity theory to describe the fluid diffusion and matrix creep in the solid skeleton, in conjunction with pore-pressure cohesive zone model and ABAQUS was used

Cyclic CH4 Injection for Enhanced Oil Recovery in the Eagle Ford Shale Reservoirs

Figure 1. The sketch of CH4 injection process in the fractured horizontal well (CH4 molecules diffuse into different nanopores).

The confined phase behavior was incorporated in the model considering the critical property shifts and capillary pressure. Subsequently, we built a field-scale simulation model of the Eagle Ford shale reservoir. The fluid properties under different pore sizes were evaluated. Finally, a series of studies were conducted to examine the contributions of

Numerical simulation study on miscible EOR techniques for improving oil recovery in shale oil reservoirs

Fig. 15 Effect of the injected gas on oil viscosity (molar diffusion mechanism is OFF). a Natural gas, b CO2

Firstly, numerical simulation methods of compositional models have been incorporated with local grid refinement of hydraulic fractures to mimic the performance of these miscible gases in shale reservoirs conditions. Implementation of a molecular diffusion model in the LS-LR-DK (logarithmically spaced, locally refined, and dual permeability) model has been also conducted.

Top