You are here
Home > Posts tagged "Barnett Shale"

Using Cohesive Zone Model to Simulate the Hydraulic Fracture Interaction with Natural Fracture in Poro-Viscoelastic Formation

Figure 8. Crack geometry in different fracturing fluid injection rate.

Using Cohesive Zone Model to Simulate the Hydraulic Fracture Interaction with Natural Fracture in Poro-Viscoelastic Formation The numerical procedure for hydraulically driven fracture propagation uses a poro-viscoelasticity theory to describe the fluid diffusion and matrix creep in the solid skeleton, in conjunction with pore-pressure cohesive zone model and ABAQUS was used

The shale gas revolution: Barriers, sustainability, and emerging opportunities

Fig. 1. Map of the Barnett Shale formation and production. The map illustrates the county-level spatial distribution of shale gas production (main map) and average per-well production rate (inset).

Abstract Shale gas and hydraulic refracturing has revolutionized the US energy sector in terms of prices, consumption, and CO2 emissions. However, key questions remain including environmental concerns and extraction efficiencies that are leveling off. For the first time, we identify key discoveries, lessons learned, and recommendations from this shale gas revolution

Optimization of Multiple Hydraulically Fractured Horizontal Wells in Unconventional Gas Reservoirs

Figure 5: Two scenarios of multiple horizontal well placement.

This paper demonstrates the accuracy of numerical modeling of multistage hydraulic fractures for actual Barnett Shale production data by considering the gas desorption effect. Six uncertain parameters, such as permeability, porosity, fracture spacing, fracture half-length, fracture conductivity, and distance between two neighboring wells with a reasonable range based on Barnett

Microseismic Imaging of Hydraulically Induced-Fractures in Gas Reservoirs: A Case Study in Barnett Shale Gas Reservoir, Texas, USA

Microseismic technology has been proven to be a practical approach for in-situ monitoring of fracture growth during hydraulic fracture stimulations. Microseismic monitoring has rapidly evolved in acquisition methodology, data processing, and in this paper, we evaluate the progression of this technology with emphasis on their applications in Barnett shale gas reservoir.

Microseismic Imaging of Hydraulically Induced-Fractures in Gas Reservoirs: A Case Study in Barnett Shale Gas Reservoir, Texas, USA   Abdulaziz M. Abdulaziz Mining, Petroleum, and Metallurgical Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt Abstract Microseismic technology has been proven to be a practical approach for in-situ monitoring of fracture growth during hydraulic fracture

Top