You are here
Home > BLOG > Adsorption > Isothermal Adsorption and Desorption Properties of Marine Shales on Longmaxi Shale in South China

Isothermal Adsorption and Desorption Properties of Marine Shales on Longmaxi Shale in South China

Figure 1. Work principles of MSB adsorption instrument.

Abstract

The investigation of adsorption and desorption properties of shale are important for estimating reserves and exploitation. The shale samples used in this paper were from the marine shale on Longmaxi shale in Sichuan and Hubei province, China. A series of analyses, such as organic carbon content test, vitrinite reflectance test, rock pyrolysis, X-ray diffraction, and N2/CO2 adsorption were performed. Gravimetric method with magnetic suspension balance was used to conduct isothermal adsorption and desorption experiments. The Langmuir, Freundlich, Langmuir-Freundlich, D-R, semi-pore, and Tothequations were used to fit the isothermal adsorption and desorption curves.

Author

Taoyue Chang*, Yuanli Shu, Yue Ma, Xinyi Xu, Yue Niu

College of Science, China University of Petroleum, Beijing, China
Received: November 15, 2017; Accepted: December 26, 2017
Copyright © 2017 by authors.


And adsorption potential theory was used to explain the adsorption and desorption process. According to the results, the shale samples have a high level of organic carbon content with the same organic matter type II1 and high degree of maturation. The volume of adsorption increases rapidly and slows down to stable with the pressure increasing. Desorption is the inverse process of adsorption and 10 MPa – 0.5 MPa is the main period of shale gas desorption. The fitting results show that three-parameter isotherm equations are better than the two-parameter ones. The adsorption temperature has a great influence on adsorption volume, little effect on potential energy. Adsorption potential varies under different TOC to affect adsorption properties. Moreover, a large adsorption potential means that the gas molecule is easy to adsorb but difficult to desorb.

1. Introduction

Shale gas is an unconventional energy resource. The most remarkable difference between shale and conventional natural gas reservoirs is the difficulty in migrating shale gas [1]. Shale gas resources are widely distributed worldwide and the total amount of shale reserves is approximately 456.23 × 1012 m3. The prospect of exploiting this reservoir is favorable. North America was the first region to utilize shale gas reservoirs successfully with an annual production of shale gas reaching 1500 × 108 m3 until 2010 (Dong et al., 2011; Zhang, 2011; EIA, May 5, 2011, April 5, 2011, December 16, 2011). Shale gas exploration and development in China is much later than in North America; nevertheless, China remains leading compared to other countries [2] [3] [4] [5]. Shale gas reservoirs in China mainly distribute in petroliferous basins, such as Sichuan, Ordos, Bohai Bay, Songliao, Jianghan, Turpan-Hami, Tarim, and Jungga basins.

Shale gas exists in adsorbed, free, and dissolved state [6]. In the three states of shale gas, adsorption is the main state, and statistical results show that shale gas in adsorption state is 20% – 80% of the total shale gas reservoirs [7] [8] [9] [10]. Free gas comes out initially in the early exploitation period [11], the shale gas in adsorption state begins to emerge subsequently, because the pressure of shale gas reservoir decreases after the free gas materializes. Thus, studying the properties of the adsorption and desorption of shale are important for exploiting shale gas reservoirs. Many researchers [12] [13] [14] have done a lot of work on methane adsorption on shales. These existing experiments results almost were carried out by the method of the volumetric method, but few were by the methods of gravimetric method.

Adsorption is the process of molecule accumulation on the surface of shale as a consequence of surface energy minimization [14]. The adsorption process is generally identified as physisorption due to van der Waals forces and can be described by the potential theory [15] [16]. Besides, some researchers have recently studied how shale geological characteristics affect the adsorption capacity, and pressure and temperature regimes [14] [15] [17] [18].

In this study, shale samples were selected in some representative areas such as Yibin and Luzhou regions in Sichuan Province [19], Jingmen region in Hubei Province. A series of analyses, such as organic carbon content test, vitrinite reflectance test, rock pyrolysis, X-ray diffraction, and N2/CO2 adsorption were performed. Gravimetric method with magnetic suspension balance was used to conduct isothermal adsorption and desorption experiments. Some equations were used to fit the isothermal adsorption and desorption curves, respectively. Adsorption potential theory was used to explain the adsorption and desorption process.

2. Experimental Methods

2.1. Samples and Preparation

All the organic-rich shale samples were black mud shales of the lower Silurian Longmaxi Formation widely developed in the Upper Yangtze Platform, south China. JING-1, JING-2, and JING-3 were from Jingmen region, Hubei Province; YS106 and YS109 were from Yibin region, Sichuan Province and YANG102 was from Luzhou region, Sichuan Province. Prior to measurement, 100 g of each sample was ground into powder of 60 – 80 mesh size. These powder samples were prepared for analysis of total organic carbon (TOC), rock pyrolysis, vitrinite reflectance test, X-ray diffraction (XRD), high pressure mercury test and N2/CO2 adsorption.

2.2. TOC, Rock Pyrolysis and Vitrinite Reflectance

WR-112 Laboratory Equipment Corporation (LECO) carbon analyzer of LECO Company, America was used to conduct the organic carbon analysis. The size of the sample particle is less than 0.2 mm. Iron and tungsten were added into the sample particle to aid combustion.

External standard analysis of the OGE workstation was used to conduct the continuous rock pyrolysis test, in which the first step was to heat to 300˚C and then to 500˚C.

UMSP-50 micro spectrophotometer was used to test vitrinite reflectance. The test conditions were temperature under 26˚C, a wavelength of 546 nm ± 5 nm (green), and ×25 to ×100 unstrained oil immersion objective. One hundred tungsten halogen lamps and electronic exchange regulator of 3 kVA were also used.

2.3. X-Ray Diffraction and N2/CO2 Adsorption

The mineral composition test was done using XRD under Cu-Kα radiation. Emission and scattering slits are both 1˚, and the receiving slit is 0.3 mm. The operating voltage is 30 KV – 45 KV, and the electric current is 20 mA – 100 mA; the scanning speed is 2˚/min, and the sampling step width is 0.02˚.

The Quadrasorb evo of Quantachrome, American was used to test mesopores structure and part of masopores structure by N2 adsorption method. Before the test, all the samples were constant temperature dried under 105˚C and vacuum, the adsorption gas purity is 99.99% and the experimental temperature is 77.35 K.

The Autosorb-iQ of Quantachrome, American was used to test micropores structure by CO2 adsorption method. After degassing treatment, all shale samples were tested under 273.15 K.

2.4. Methane Isothermal Adsorption and Desorption Experiment

The volumetric method is commonly used in isothermal adsorption experiments on CBM and shale gas [20] [21] [22]. The principle of volumetric method is to calculate the adsorption volume according to the change of pressure.

In this study, the method selected to conduct the isothermal adsorption and desorption experiments is the gravimetric method with magnetic suspension balance (MSB; Figure 1). The weight of the shale sample was balanced using a non-contact suspending coupling mechanism. The balance has zero point and measuring point, and the two states automatically switch regularly to remove the inherent negative effects from zero drift effectively (reaching 0.00001 g accuracy). This design can achieve high precision measurement. The experiment process includes blank test, sample pretreatment, buoyance test, isothermal adsorption test, isothermal desorption test and data treating.

Blank test tested without any sample in container and sample pretreatment avoided the influence from water and other gases aim to decrease the error. Shale samples were pretreated under 105˚C and vacuumed before the isothermal adsorption experiment. The buoyance test was tested with helium to calibrate the buoyance of samples and container suffered after the pretreatment, which can calculate the adsorption volume accurately.

Figure 1. Work principles of MSB adsorption instrument.
Figure 1. Work principles of MSB adsorption instrument.

The adsorbed gas is 99.8% pure methane, and the experiment temperature is 30˚C, and the shale samples were pulverized to 0.18 mm. The selected pressure points were 0 MPa, 0.5 MPa, 1 MPa, 2 MPa, 3 MPa, 4 MPa, 6 MPa, 10 MPa, 15 MPa, 20 MPa, 25 MPa, 30 MPa, and 33 MPa, respectively.

Desorption experiments were conducted under the same conditions as the adsorption experiments, except for the pressure setting. The selected pressure points for desorption were 33 MPa, 30 MPa, 25 MPa, 20 MPa, 15 MPa, 10 MPa, 6 MPa, 4 MPa, 3 MPa, 2 MPa, 1 MPa, 0.5 MPa, and 0 MPa, respectively.

3. Experimental Results

3.1. Geological Parameters Analysis Results

Table 1 shows that organic carbon content of the shale samples is 0.22% – 4.17% with an average of 1.92%. The organic matter type II1 indicates the high degree of organic matter maturity.

Table 1. Properties of shale samples.
Table 1. Properties of shale samples.

The results of vitrinite reflectance are 1.92%-2.45% with an average of 2.11%, also indicating the high degree of organic matter maturity. Clay mineral content is 29.9% – 53.5% with an average of 42.0%. Table 2 show the low temperature N2 adsorption and CO2 adsorption results, Figure 2 and Figure 3 respectively represent the pore size distribution micropores and mesopores.

Table 2. Pore construction of shale samples.
Table 2. Pore construction of shale samples.

The pore volume of BJH method ranged from 0.003 cm3/g – 0.017 cm3/g, DFT method ranged from 0.002 cm3/g – 0.191 cm3/g. BJH method is used for calculate mesopore and a part of macropore. DFT method is used for calculate micropore and mesopore. Combining with the results in Table 2, Figure 2 and Figure 3, it is shown that both method are similarity and the result of pore width is small.

Figure 2. Distribution of micropores of shale samples.
Figure 2. Distribution of micropores of shale samples.

Therefore micropores developed well in the shale samples. The specific surface area of micropores ranged from 3.77 m2/g – 21.75 m2/g is larger than mesopores ranged from 1.22 m2/g – 8.39 m2/g in shale samples. Micropores controlled the adsorption process and had larger specific surface area, thus it was benefit to adsorb shale gas.

Figure 3. Distribution of mesopores of shale samples.
Figure 3. Distribution of mesopores of shale samples.

3.2. Results of Isothermal Adsorption and Desorption

MSB was used for the isotherm adsorption experiments. The results are listed in Figure 4, which shows that the adsorption volume increases rapidly at 0 MPa – 10 MPa. Micropores play a major role in the adsorption process, and the potential field of adjacent hole walls overlap. The adsorbed energy of the gas molecules is high; thus, the adsorption volume of the micropore filling is large [8]. The adsorption volume increases gradually at 10 MPa – 25 MPa, where in the mesopores begin to assume a major role. The specific surface and gravity of the wall of the hole is smaller than micropore, thus, adsorption velocity becomes slow.

The adsorption volume nearly remained unchanged after 25 MPa; microporous and mesoporous adsorptions all reached saturation. Macropores have a large diameter, and gas molecules exist freely in them. Thus, the volume of adsorbed gas molecules, as well as the adsorption volume, does not increase.

Figure 4. Isothermal adsorption curves of the shale samples at the same temperature.
Figure 4. Isothermal adsorption curves of the shale samples at the same temperature.

Desorption is the inverse process of adsorption. MSB is also used to conduct the desorption experiments. Desorption velocity, which is an important parameter of shale gas desorption, is the ratio of desorbed gas volume to time [23] [24] [25]. The expression is

Desorption velocity, which is an important parameter of shale gas desorption, is the ratio of desorbed gas volume to time

where v represents the desorption rate (mL/gh−1), V represents the desorption volume (mL/g), and t represents the time interval for desorption balance(h). The curves of isothermal desorption and desorption velocity are shown in Figure 5. Figure 6 shows that when the pressure is high (33 MPa – 10 MPa), desorption velocity is small and remains at a relatively stable level. Desorption rate rises rapidly when pressure falls to 10 MPa, indicating that 10 MPa – 0.5 MPa is the main period of shale gas desorption.

Figure 5. Curves of isothermal desorption volume and desorption velocity.
Figure 5. Curves of isothermal desorption volume and desorption velocity.

3.3. Isothermal Adsorption and Desorption Fitting

Langmuir, Freundlich, Langmuir-Freundlich, D-R, and Toth equations are commonly used for isotherm adsorption to fit the adsorption curves [26] [27]. In addition, semi-pore equation is also used in this study to select out the best equation among the ones stated above. The equations are listed in Table 3 [13] [28] [29] [30] [31].

Table 3. Isothermal adsorption equations.
Table 3. Isothermal adsorption equations.

VL and V0 are the saturated adsorption capacity (mL/g); PL represents the Langmuir pressure (MPa); K represents the empirical constant; x represents the constant, x < 1; m is the heterogeneity parameter of adsorbent, m ≤ 1; b = 1/PL; D is the constant of the adsorbent; PS denotes the saturated vapor pressure (MPa); α represent the parameters relative to the adsorbent or adsorbate property. k is the constant of inhomogeneity of adsorbent. Table 3 shows that the Langmuir, Freundlich, and D-R equations comprise two parameters, whereas Langmuir-Freundlich, semi-pore, and Toth equations have three. Among these equations, Langmuir is the simplest and considers the monolayer adsorption on the adsorbent surface in the adsorption process. D-R equation is based on the micropore filling theory and is more suitable for microporous solids.

Table 4. Comparison of VL of adsorption and desorption (mL/g).
Table 4. Comparison of VL of adsorption and desorption (mL/g).

Isothermal Adsorption and Desorption Properties of Marine Shales on Longmaxi Shale in South China

The investigation of adsorption and desorption properties of shale are important for estimating reserves and exploitation. The shale samples used in this paper were from the marine shale on Longmaxi shale in Sichuan and Hubei province, China. A series of analyses, such as organic carbon content test, vitrinite reflectance test, rock pyrolysis, X-ray diffraction, and N2/CO2 adsorption were performed. Gravimetric method with magnetic suspension balance was used to conduct isothermal adsorption and desorption experiments. The Langmuir, Freundlich, Langmuir-Freundlich, D-R, semi-pore, and Tothequations were used to fit the isothermal adsorption and desorption curves.
Emanuel Martin
Emanuel Martin is a Petroleum Engineer graduate from the Faculty of Engineering and a musician educate in the Arts Faculty at National University of Cuyo. In an independent way he’s researching about shale gas & tight oil and building this website to spread the scientist knowledge of the shale industry.
http://www.allaboutshale.com

Leave a Reply

2 × 1 =

Top