You are here
Home > Author: Emanuel Martin

An Analytical Model for Capturing the Decline of Fracture Conductivity in the Tuscaloosa Marine Shale Trend from Production Data

Figure 1. Schematic chart between two fractures. (a) Virtual boundary between two fractures. (b) Schematic chart of pressure distribution.

An Analytical Model for Capturing the Decline of Fracture Conductivity in the Tuscaloosa Marine Shale Trend from Production Data Production data analyses with the model revealed that the pressure-dependent fracture conductivity in the TMS in the Mississippi section declines following a logarithmic mode, with dimensionless coefficient χ varying between 0.116 and

Comparative Porosity and Pore Structure Assessment in Shales: Measurement Techniques, Influencing Factors and Implications for Reservoir Characterization

Figure 1. The porosity values obtained from mercury intrusion capillary pressure (MICP), Helium, and nuclear magnetic resonance (NMR) for two different shale formations.

Comparative Porosity and Pore Structure Assessment in Shales: Measurement Techniques, Influencing Factors and Implications for Reservoir Characterization Porosity and PSD have been interpreted based on nuclear magnetic resonance (NMR), low-pressure N2 gas adsorption (LP-N2-GA), mercury intrusion capillary pressure (MICP) and helium expansion porosimetry. The results highlight NMR with the advantage of detecting

A Data-Driven Workflow Approach to Optimization of Fracture Spacing in Multi-Fractured Shale Oil Wells

Figure 1. Twelve hydraulic fractures developed from 12 perforation clusters in three stages of fracturing.

A Data-Driven Workflow Approach to Optimization of Fracture Spacing in Multi-Fractured Shale Oil Wells This offers a reliable and cost-effective means for assessment of well production potential in terms of optimization of fracture spacing in the MFHW. Result of a field case study indicated that three wells were drilled in an

Using Cohesive Zone Model to Simulate the Hydraulic Fracture Interaction with Natural Fracture in Poro-Viscoelastic Formation

Figure 8. Crack geometry in different fracturing fluid injection rate.

Using Cohesive Zone Model to Simulate the Hydraulic Fracture Interaction with Natural Fracture in Poro-Viscoelastic Formation The numerical procedure for hydraulically driven fracture propagation uses a poro-viscoelasticity theory to describe the fluid diffusion and matrix creep in the solid skeleton, in conjunction with pore-pressure cohesive zone model and ABAQUS was used

Analysis of Pressure Communication between the Austin Chalk and Eagle Ford Reservoirs during a Zipper Fracturing Operation PART 2

Analysis of Pressure Communication between the Austin Chalk and Eagle Ford Reservoirs

PART 2 Analysis of Pressure Communication between the Austin Chalk and Eagle Ford Reservoirs during a Zipper Fracturing Operation Interpretation of Results The principal purpose of our study is to develop a conceptual model for the observed pressure communication between the two reservoirs (Eagle Ford and Austin Chalk). The estimated pressure acting on

Analysis of Pressure Communication between the Austin Chalk and Eagle Ford Reservoirs during a Zipper Fracturing Operation

Figure 2. (a) RELLIS wellbore trajectories. The white arrows represent the surface location of each well. The dotted outline represents the landing zone.

Analysis of Pressure Communication between the Austin Chalk and Eagle Ford Reservoirs during a Zipper Fracturing Operation Our study presents field data collected in fall 2017 that measured the annular pressure changes that occurred in Austin Chalk wells during the zipper fracturing treatment of two new wells in the underlying Eagle

Hydraulic Fracture Design with a Proxy Model for Unconventional Shale Gas Reservoir with Considering Feasibility Study

Figure 5. Shale gas reservoir in 3D grid systems—(a) matrix permeability, (b) matrix porosity, and (c) hydraulic fracturing design.

Hydraulic Fracture Design with a Proxy Model for Unconventional Shale Gas Reservoir with Considering Feasibility Study The proxy model uses a robust regression scheme and can replace a commercial reservoir simulator.  The proxy model proposed can determine the influence of impact factors on the production at each production time. The calculation

Retention of Hydraulic Fracturing Water in Shale: The Influence of Anionic Surfactant

Figure 5. The Energy-Dispersive X-Ray (EDX) spectra of (a) BG-2 and (b) KH-2 shales with a corresponding miniature FE-SEM images.

Retention of Hydraulic Fracturing Water in Shale: The Influence of Anionic Surfactant However, the role of some surface active agents like surfactants that are added in the hydraulic fracturing mixture in this issue needs to be understood. In this study, the influence of Internal Olefin Sulfate (IOS), which is an anionic

Integrating Embedded Discrete Fracture and Dual-Porosity, Dual-Permeability Methods to Simulate Fluid Flow in Shale Oil Reservoirs

Figure 1. Fracture density and fracture length correlation.

Integrating Embedded Discrete Fracture and Dual-Porosity, Dual-Permeability Methods to Simulate Fluid Flow in Shale Oil Reservoirs Most previous simulation studies have been based on dual porosity, but simulation results from dual-porosity models have not been as accurate as discrete fracture models in composition modeling. This study proposes a new model that integrates

A Prediction Model for Methane Adsorption capacity in Shale Gas Reservoirs

Figure 3. The relationship between the clay content and Langmuir volume at experimental temperature for low, medium and high TOC shale samples.

A Prediction Model for Methane Adsorption capacity in Shale Gas Reservoirs   The model was established in four steps: a model of Langmuir volume at experimental temperature, the temperature dependence of Langmuir volume, a model of Langmuir pressure, the temperature dependence of Langmuir pressure. In the model of Langmuir volume at experimental

Imbibition — the “old all new”​production mechanism of shale gas and oil

Imbibition --- the "old all new"​ production mechanism of shale gas and oil

Imbibition --- the "old all new"​production mechanism of shale gas and oil Conventional oil and gas production mechanisms   Such conventional transport mechanism is well understood and also believed to be the dominant transport mechanism in shale gas and oil production. Under such conventional production mechanism, it is widely accepted that there is the

Numerical and Experimental Investigations of the Interactions between Hydraulic and Natural Fractures in Shale Formations

Figure 19. Photographs of specimen Y-7-1 after conducting experiments.

Numerical and Experimental Investigations of the Interactions between Hydraulic and Natural Fractures in Shale Formations The inelastic deformation, e.g., stick, slip and separation, of the geologic discontinuities is captured by a special friction joint element called Mohr-Coulomb joint element. The dynamic stress transfer mechanisms between the two fracture systems and the

Science of Carbon Storage in Deep Saline Formations: Process Coupling across Time and Spatial

Science of Carbon Storage in Deep Saline Formations: Process Coupling across Time and Spatial

Science of Carbon Storage in Deep Saline Formations: Process Coupling across Time and Spatial Editors: Pania Newell & Anastasia G. Ilgen Abstract: Science of Carbon Storage in Deep Saline Formations: Process Coupling across Time and Spatial Scales summarizes state-of-the-art research, emphasizing how the coupling of physical and chemical processes as subsurface systems re-equilibrate during

Methods of Decline Curve Analysis for Shale Gas Reservoirs

Figure 2. Shale samples. (a) Outcrop of natural fractures in Woodford Shale, Oklahoma, USA [3]; (b) High-resolution images of Montery shale, California, USA [4].

Methods of Decline Curve Analysis for Shale Gas Reservoirs In this article, the eight most popular deterministic decline curve methods are reviewed: Arps, Logistic Growth Model, Power Law Exponential Model, Stretched Exponential Model, Duong Model, Extended Exponential Decline Model, and Fractural Decline Curve model. This review article is dedicated to summarizing

Shale Reservoir Drainage Visualized for a Wolfcamp Well (Midland Basin, West Texas, USA)

Figure 11. (a–c) Row 1: Pressure contour maps (in MPa) after 1 month drainage for the same central region of Figure 9d, now including flow through micro-cracks normal to the main fractures.

Shale Reservoir Drainage Visualized for a Wolfcamp Well (Midland Basin, West Texas, USA) The visualization of flow near hypothetical micro-cracks normal to the main fractures in a Wolfcamp well shows such micro-cracks support the recovery of hydrocarbons from deeper in the matrix, but still leave matrix portions un-drained with the concurrent

Top