You are here
Home > BLOG > Flow Mechanics

An Analytical Flow Model for Heterogeneous Multi-Fractured Systems in Shale Gas Reservoirs

Figure 1. Schematic of physical models for hydraulically fractured horizontal wells. (a) The typical five-region flow model proposed by Stalgorova and Mattar [10]. (b) The improved five-region flow model (new model). Fracture half-length: xf; width of the hydraulic fracture: wD; distance from the hydraulic fracture to stimulated reservoir volume (SRV): y1; no flow bound: x2,y2.

An Analytical Flow Model for Heterogeneous Multi-Fractured Systems in Shale Gas Reservoirs Tang et al. [4] established a three-dimensional numerical model based on the construction of spatial discretization by the finite volume method. Wang [5] proposed a unified model for shale gas reservoirs based on discrete fracture networks to investigate shale

Numerical Study of Simultaneous Multiple Fracture Propagation in Changning Shale Gas Field

Figure 1. Three transverse fractures with a uniform spacing of 23.3 m in a single stage.

Numerical Study of Simultaneous Multiple Fracture Propagation in Changning Shale Gas Field A series of case studies were investigated to analyze the effects of engineering parameters on simultaneous multiple fracture propagation. The fracture spacing, perforating number, injection rate, fluid viscosity and number of fractures within one stage were considered. The simulation

Analysis of Pressure Communication between the Austin Chalk and Eagle Ford Reservoirs during a Zipper Fracturing Operation PART 2

Analysis of Pressure Communication between the Austin Chalk and Eagle Ford Reservoirs

PART 2 Analysis of Pressure Communication between the Austin Chalk and Eagle Ford Reservoirs during a Zipper Fracturing Operation Interpretation of Results The principal purpose of our study is to develop a conceptual model for the observed pressure communication between the two reservoirs (Eagle Ford and Austin Chalk). The estimated pressure acting on

Analysis of Pressure Communication between the Austin Chalk and Eagle Ford Reservoirs during a Zipper Fracturing Operation

Figure 2. (a) RELLIS wellbore trajectories. The white arrows represent the surface location of each well. The dotted outline represents the landing zone.

Analysis of Pressure Communication between the Austin Chalk and Eagle Ford Reservoirs during a Zipper Fracturing Operation Our study presents field data collected in fall 2017 that measured the annular pressure changes that occurred in Austin Chalk wells during the zipper fracturing treatment of two new wells in the underlying Eagle

Methods of Decline Curve Analysis for Shale Gas Reservoirs

Figure 2. Shale samples. (a) Outcrop of natural fractures in Woodford Shale, Oklahoma, USA [3]; (b) High-resolution images of Montery shale, California, USA [4].

Methods of Decline Curve Analysis for Shale Gas Reservoirs In this article, the eight most popular deterministic decline curve methods are reviewed: Arps, Logistic Growth Model, Power Law Exponential Model, Stretched Exponential Model, Duong Model, Extended Exponential Decline Model, and Fractural Decline Curve model. This review article is dedicated to summarizing

Production performance analysis of fractured horizontal well in tight oil reservoir

Fig. 8 Log q/(Pi−Pwf) versus log time plot of simulated case 1

There main focuses of this study are in two aspects: (1) find out effective methods to estimate OOIPSRV for an individual MFHW in tight oil reservoir when there is only production data available and (2) study the relationship between productivity and fracturing network parameters (ω and λ) so as to

Analytical model for pressure and rate analysis of multi-fractured horizontal wells in tight gas reservoirs

Fig. 5 Transient pressure type curves of MFHW in tight gas reservoir

Fractal porosity and permeability were employed to describe the heterogeneous distribution of the complex fracture network. The stress sensitivity of fractures was also considered in the model. Pedrosa substitution and perturbation method were applied to eliminate the nonlinearity of the model. Analytical solutions in the Laplace domain were obtained using

Effects of stress-dependent permeability on well performance of ultra-low permeability oil reservoir in China

Fig. 1 Permeability increment versus pore pressure or effective stress

Several analytical simulations under the conditions of constant wellbore flowing pressure were performed to quantitatively assess the impact of stress sensitivity on single well performance. It is demonstrated that despite the stress-dependent permeability can have an adverse impact on production rate and recovery volume, it may be favorable for water

An analytical equation for oil transport in nanopores of oil shale considering viscosity distribution

Fig. 2 Structure of nanopores in organic material of shale formation. Reproduced with permission from (Zeng et al. 2017)

Introduction Great pressure is laid on the energy supply with the rapid rising population (Lee 2011; Sun et al. 2017a, b, c, d, e, f, g, h, i, j; Sheikholeslami et al. 2018a, b, c). Besides, the rapid depletion of conventional petroleum and natural gas resources aggravates the seriousness of the

An embedded fracture modeling framework for simulation of hydraulic fracturing and shear stimulation

A numerical modeling framework is described that is able to calculate the coupled processes of fluid flow, geomechanics, and rock failure for application to general engineering problems related to reservoir stimulation, including hydraulic fracturing and shear stimulation.

As fluid is exchanged between the two domains, conservation of mass is guaranteed through a coupling term that appears as a simple source term in the governing mass balance equations. In this manner, as new tensile fractures nucleate and propagate subject to mechanical effects, numerical complexities associated with the introduction

Modeling and simulation of gas flow behavior in shale reservoirs

Fig. 21 3-D dynamic pressure depletion.

This result has been further compared with the help of MATLAB so as to obtain a complete pressure-derived model. The result shows the applicability of this in the real-life projects where it is difficult to model the fractures and obtain the flow rate with them in fractures and how to

A Comprehensive Prediction Model of Hydraulic Extended-Reach Limit Considering the Allowable Range of Drilling Fluid Flow Rate in Horizontal Drilling

Hydraulic extended-reach limit (HERL) model of horizontal extended-reach well (ERW) can predict the maximum measured depth (MMD) of the horizontal ERW. The HERL refers to the well’s MMD when drilling fluid cannot be normally circulated by drilling pump. Previous model analyzed the following two constraint conditions, drilling pump rated pressure and rated power. However, effects of the allowable range of drilling fluid flow rate (Qmin≤Q≤Qmax) were not considered. In this study, three cases of HERL model are proposed according to the relationship between allowable range of drilling fluid flow rate and rated flow rate of drilling pump (Qr). A horizontal ERW is analyzed to predict its HERL, especially its horizontal-section limit

Results show that when Qmin ≤Qr ≤Qmax (Case I), Lh depends both on horizontal-section limit based on rated pump pressure (Lh1 ) and horizontal-section limit based on rated pump power (Lh2 ); when Qmin  < Q max  < Qr (Case II), Lh is exclusively controlled by Lh1; while Lh is only determined by

Influence of gas transport mechanisms on the productivity of multi-stage fractured horizontal wells in shale gas reservoirs

In order to investigate the influence on shale gas well productivity caused by gas transport in nanometer-size pores, a mathematical model of multi-stage fractured horizontal wells in shale gas reservoirs is built, which considers the influence of viscous flow, Knudsen diffusion, surface diffusion, and adsorption layer thickness. A discrete-fracture model is used to simplify the fracture modeling, and a finite element method is applied to solve the model.

The existence of an adsorption layer on the nanopore surfaces reduces the effective pore radius and the effective porosity, resulting in low production from fractured horizontal wells. With a decrease in the pore radius, considering the adsorption layer, the production reduction rate increases. When the pore radius is less than

Investigation of shale gas microflow with the Lattice Boltzmann method

The Lattice Boltzmann method can be used to study the flow field in the micropore spaces and then provides numerical solutions even in complex pore structure models. Understanding the transport characteristics and establishing a way to estimate potential gas flow is very important to guide shale gas reserve estimation and recovery schemes.

The results show that net desorption, diffusion, and slip flow are very sensitive to the pore scale. Pore pressure also plays an important role in mass fluxes of gas. Temperature variations only cause small changes in mass fluxes. The Lattice Boltzmann method can be used to study the flow field

Study of Gas Flow Characteristics in Tight Porous Media with a Microscale Lattice Boltzmann Model

Study of Gas Flow Characteristics in Tight Porous Media with a Microscale Lattice Boltzmann Model

Abstract To investigate the gas flow characteristics in tight porous media, a microscale lattice Boltzmann (LB) model with the regularization procedure is firstly adopted to simulate gas flow in three-dimensional (3D) digital rocks. A shale digital rock and a sandstone digital rock are reconstructed to study the effects of pressure, temperature

Top